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I. Introduction . 11 853 July 66

The statistical analysis of the data obtained from the "Wolf

Trap" experiment will be based on the growth model given graphically

in Figure 1. This model assumes that the observed response is an

additive combination of soil settling, growth of first organism,

'growth of second organism, and a residual error. More specifically

these assumptions are

l.

.but hopefully of sufficient duration to estimate T

The soil settling curve can be represented by a known

function £(0,t) with unknown parameter @ which may be

!

vector valued. As a first approximation £(@,t) is taken
to be a negative exponential function

Bt

£(0,t) = K_e ° t >0

where Ko and ﬁo will be estimated from the data, It is
tacitly assumed that the time of the startvof the experiment
(t = 0) is known.

The growth of the first organism is exponential beginning

Both T, and T_ are

at t1me’T and ending at time Tz. 1 2

1

unknown and will be estimated from the data. The duration

of - the experiment may not be long enough to estimate TZ
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response due to the growth of thé first organism is

B, (t-1.)
1 1
K e 715t<'rz

BTy
Kle t 2 Tz

where Kl and pl are estimated from the data.
3. The growth of the second organism is also exponential

beginning at time T, and ending at time T Again either

3 4°

of these times may be greater than the duration of
the experiment. Also two possible conditions can arise:
Tz < Ts-and Tz > 73. The response due to the growth of the

second organism is

‘ pz(t-Ts)
Kze

Bo(T4™T3)
s
ze t 74

<t <
73t74

K

4, The residual errors et are independently and normally
distributed with zero mean and unknown variance 02. The
normality assumption is partially justified by making the
number of bits per word large énouéh so that the quantizing

error is small compared to the equipment errors which are

assumed to be normally distributed.

Proceeding in the above manner one could postulate any finite
number of growth organisms and estimate the corresponding unknown

parameters,



“with two growth organisms and T

- time t is L

II. Derivation of the estimates, Based on our additive assumptions

2 < 73, the observed response Y at

. -pot | é
= <
(a) Ye Koe + e, 0 ’t Tl
(b) = K e—ﬁot + K epl(t-Tl) + e T. st <T
) o 1 t : 1
Bt B,(t,~T.)
o 12 1 .
= T s <
(1) (o) K e + K e ey R
Bt Bi(r, =T.) B, (t=T,)
o . 12 1 2 3
= K’ <
(d) Koe + Kle + Kze + et T3 St T4
Bt B T,mT) By(rmTy)
o 12 1 24 3
(e) = Koe + Kle | + Kze + e, T4 <t
If 72 > T3, the abové equafions are modified as follows:
' |t B, t-T)
¢ . o 1 1
= < <
(b") yt = Koe + Kle + et ' Tl t 73
. Bt B, (t=7.) B, (t-7.)
r : o 1 1 2 3
- < <
(1 D  =kKe. ® +Ke + Kye ey, T3St
At B (T,-T) B, (t-7,)
€ ~Ke © +ket 2V ixe? 3 se T, St<T,

o 1 2 t 2

Based on the assumptions that the e, are independently and normally

t
distributed with mean zero and variance 02, the method of maximum
likelihood (MML) will be used to estimate Ki,ipi, Ti' i=0,1,2, and 02.
This procedure leads to a system of simultaneous transcendental
equations which are solved by an iterative procedure in Appendix A,

Estimation of T Ko, Kl’ 50, 51 and possibly Tz.

1’

It is further assumed'that the primary interest centers about Tl

and pl, i.e. is there bacterial growth and at what time does it begin?



‘choose a likely value for T

4

Several cases arise depedding upon whether or not Tz occurs before the

end of the experiment and before or after T To simplify the initial

3° .
e
computations, the effect of a possible second organism will be neglected.

The two models, labeled A and B, under consideration are 1(a), (b), .and

1(a), (b), (c), respectively, depending on whether Tz occurs,

.

Model A. From an inspection of the data, choose a time tf as the
termination of the experiment. Given these f consecutive observations

1 by a visuél inspection of the data and

maximize the likelihood function or its natural logarithm

’

n -1

1 £ . '
j: Boti 2 Bt B, (t,-T,)
i i 17,2
1 £/2 _1/02 (yl—xoe o 1) + }i (yi-Koe o TKle o )
(2) L = 5 e i= i=n1
' 2Tg :
n_ -1
1 £
: Bt ,- Bt B, (t, -1.)
£ 2 1 po i 2 }Z po i 1V 1
(3) In L = 2 1n 270 02 L (yi Koe ) o+ (yi Koe -Kle

i=n p
1 s

where n, is the number of observations that have been taken up to.

1
and including the time estimates for Tl' L or 1ln L is maximized by
setting ‘
' d1nL d1nlL d1nL d1lnkL o
= = = —6 =
oK oK, B, N

and solving the following four éimultaneous transcendental equations
by an iterative technique suggested in Appeﬁdix A, This method trans-
forms the non-linear problem to a linear one by using a first order

Taylor series expansion of £(t,0).

)

2
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nl-l
-3 t - t, Bt Bt .
d1ln L 2 po i o i }Z o i oi
5K = = ‘E; e (yi Koe ) + e (yi Koe - K1
o g i= - i=n . ..
1
n -1 /
1 f
Lo - t -p t -ﬁ t .
dlnL 2 po i oi Z oi
e = —— -K t - - -
3p 2 Z Kots® (v - K@ ) + Koty vy = Ko
(o] o i= =n
) 1
: : Bt =ty )
f t ~tn ) -3t (t.-t. )
d1lnL 2 By (ty ! Bots By (ty n,
K. = 2 e (y; - K,® - K )
1 g i=n
1
f (t. -t ) -8 t (t. -ty )
BlnL__Z_zK(t_t)eﬁlinl( _Kepoi_Keﬁlini
3. 2.1 T ta i 7 % 1
1 g i=n 1l

1
Denoting the estimates of Ko, Kl, ﬁo' pl which make the above partial

derivations zero by kO; kl; bo' b. we have the following four ;

1
‘equations,

v



f
b t -bh t b t -b t b, (t =t_ )
o'i - oi E: o'i - o _ 171 nyts
.E; e (yi koe ) + . e (yi koe kle ) =0 '
1= 1=nl ;
/
v /

ni'l - f - _ ’
‘ t.e boti( -k e boti) + }: t. e boti( -k e P01 -k ebl(ti fn )) =0
Lo i Vi 1 Yi = % 1

i= i=nl

(49)

L (e -ty ) b t b, (t, =ty )

¥ 171 m7oe oi 17 My

Z, e . (y. - k o - ke " | ) =0

i&h i o) 1

1
f b, (t, -t ) =b t b, (t, =ty )
- 11 my oi 1V Y
~§Z (ti tn Ye (yi koe kle y=20
1=nl 1

1 1

The procedure for finding the maximum likelihood estimate T_ of T

is as follows:

1.

Choose an initial‘nl. Solve equations (4) and compute

n-l bt 2 I b t by (t,~tn) 2
Q= y. - k e o1 + E; y. - k e oi -ke° 1

. i o i (o) 1

i= .
Choose another n1 and repeat the calculations in the pfeceding
step. °
Repeat the above procedure until aylocal minima for Q is
obtained. 4This is equivalent to maximizing L or 1lmn L.

that maximizes Q. Then Y

Let m be the value of ny =
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Point estimations of Ko’ Kl’ po, Bl' 02. The solutions of equations (4)

with n,o=m give the maximum likelihood (or least squares) estimates L
. ' /

7/

ko’ kl’ bo and b1 of the parameters Ko, Kl”ﬁo’ 91 respectively. Thgn
/
maximum likelihood estimate of 02 is '
o A2 _ Qmin
= — .

Confidence Intervals for pl and.Tl. (Model A),

Using large sample theory for the distribution of maximum
likelihoéd estimates a random interval, which contains the unknown
parameter (l;a)% of the time, can be constructed provided certain
mild regularity conditions are satisfied. Such random intervals are

called confidence intervals. For tf'< Tz (Model A) the (1-2a)

confidence interval for pl is
- < <
by = 2y 00y =By <b + 2z 0(b))
where

z —a is the value of the unit normal random variable Z such that’

1
- < =1-a
?[z zl?a] 1 -a
commonly used values are
‘ L B gy = 1.96 '
: vion. (45
z = 2,58

.995



2
2 o
o (b)) = ra—

2
X }: (ty =7
i=m )

2 ezﬁl(ti'Tl)
///

and the unknown parémeters are replaced by their maximum likelihood /

estimates. : .

The (l-2a) confidence interval for T, is

1
C - < <
(tm zl-aa(tm) Tl Fm + zl_ac(tm))
where : .

~ 2

O'z(tm) = n g e
2 2 z ezﬁl(ti"rl)
18
i=m-

Appendix B gives the derivafion‘of these. results,

Due to the finiteness of our sample and the replacement of the

.unknown parameters by their estimates, the above confidence intervals

are only approximations.

Model B. (TZ'< tf). Let us now assume that the first organism
has reached a saturation point in its growth at time Tzvless than

t, which is less than T Equations 1(a), (b), (c) apply.

£ 3’

The procedure given for Model A is modified as follows:

1. Choose tm as in Case A.
2. From a visual inspection of the data choose initial estimates

respéctively.

t and t of T, and T
n n 1l ) 2
1 2
3. Minimize Q for this choice of nl and nz. '
4. Vary n, and n, until a local minimum, Qmin for Q is

obtained.



Where

 =b t 2

i=n1

: nl-l
_ o oi,2 }: ‘ oi _ 1'7d
Q= ;Z; (v, ke )T+ (y, ke ke T

b

| oi
+ zz (yi koe . ‘- kle ' )
. 1=n2 . :

. oQ 5_,aQ _0Q _oQ
Setting Ok = Ob_ " 3k .- 3b, 0

gives the following system of equations.

n_ -1
- t -
e bo i( -k e boti)
yi (o)
i= ‘ 3
nz-l
-b t -b t b (t. -ty )
+ E: e %Ly, - ke Pogkel TN
L i 1
=n, .
. e
£ b t bt b, (t t. )
VT - n,”‘n
+ 2; e ©° i(y..- ke 91 _xel "2 M ) =0
' i=n 1 1
2 ‘ )
nl-l . nz-l
) bt v - -b t _ -
t.e ° i(y -k e boti) + E: t. e bo i(y -k e ° ti k ebl(ti tpl))
i i o . L1 i 0o 1
i= i=n
1l
f b t <b t b, (t t. )
+ E: te ° 1( ke ° 1. k., e 10 ! ) =0
L 1 Vi 7 % 1 =



1=n1

o . ' ’ 2
Point Estimates of Ko, Kl’ po, Bl’ Tyo 72, g .

Let m,g pe the values of nl and n2 which yield Qmin' Then

and the maximum likelihood estimates of Ko’ Kl’ ﬁo’ Bl are

’ N '
‘ko’ kl’ bo’ bl respectively in (4°) with
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Confidence Intervals for ﬁl, Tl.

the time period t

The procedure is the same as in Model A with the obvious modification

/

in the summation bétween n and £, If the number of observations in

£

' 7/
- tn is much greater than the number in the period
t -t is
n - n
f-n>>n+~n,
A simplification and a theoretical improvement in the confidence

interval is obtained (see Appendix B). Under the above condition
' 2

g B,(T,"Ty)

¢}

cz(bl) =

)

2
fK; (Tz Tl

2
o

2 2, . v
o (tn) =0 (tm) = 2, ) 251(72'71)
) | le pl e

and the confidenCe interva1share as in Case A.
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Appendix A, Iterative Solutions of Equations (4) and (4‘).

For normally independently distributed errors the method of
maximum likelihood is identical ‘'with the method of least squares. '
/
The iterative procedure for finding the gstimates of Ko’ Kl' ﬁo, ﬁl

is given in detail in the paper’'by H, O. Hartley:; '"The Modified

Gauss-Newton Method for the Fitting of Non-Linear Regression Functions

by Least Squares," in Technometrics, Vol. 3, No. 2, May 1961,

PP. 269-280. ~

The following manuals, which include a computer program, would

‘also be extremely useful in finding the above estimates:

"The Solution of the General Least Squares Problem with Special
Reference to High-Speed'Computers" LA-2367 and LA2367 addenda.
Los Alamos Scientific Lagoratory of the University of California,
Los Alamos, ﬁ.M., aVailable.from the
Office of Technical Services
\ :U.S. bept. of Commerce

Washington 25, D.C.

;

L
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The method used in the above references consists in approximating
the expected values of the response given in (1) by a first order
Taylor series expansion. This reduces the non-linear problem to a ,’
linear one. An initial estimaie'is made of the unknown parameters and
an iterative proqedure is employgd to obtain refined estimates of these -
unknown parameters. The two problems, the convergence of the refined
estimates and their‘convergence to the correct value, can be resolved
by using the iterative procedure for several initial values of the
unknown.parameters and then comparing the calculated response using the
refined estimates wiéh the observed values,

The Los Aiamoé'itérative ptocedure'is applied to the above problem
as follows;

Given

vy = f(xi)el,...,ep) +e,
whgre yi is the ith observafion of the dependént ﬁafiable
| 'xi - indebendent variable

61,...,6  -- unknown parameters

0° = (91°,...,ep°). ‘

The first order Taylor expansion of f around 90 = (elo,...,epo) is

p
(5 £(x,0) = £(x,0%) + 21 £ (x,8) 6, - 0%
’ | FouE J J
o~ o e of
where 0 ¢ (0,6 ) and f_ (x,8) = FYY
) 3 93 o5

. In the remainder of the derivation s’will be taken equal to eo.
We will find é an estimate’of eo by using (5) to minimize a sum of

squares



(o] (o]
(6) iZ;. fk(xi’e )J; fj(xi'e )(OJ -

equations (6) is solved for e giving a value 91;

£

Nl

f
0299 _
- Z

a4 B
[
]
B

(yi

[
l

- f(xi;e ) -

P

- f(xi,652 +

p

J=

2

_nl

£

p

E)‘i )

An initial value is chosen for eo

14

(v, - £(x 007

o 0,,2 .
((yi - 2(x,,6 - ;Z;fj(xi’e )0, - 0.%) Y

o _ a0 o
Z; £,0x,,0% (8, = 0,9 ]2, (x,,6°)

k=1,2,...,p

[o] (o]
fk(xi.e )(yi - f(xi.e )

[}
Et\yjrb.

k =‘l,...,p .
and the system of p linear

This process is

repeated with ellreplacing eo yielding a new solution ez, etc. until

)

n

n-1

-0 is suffieciently small.

Applying. this procedure to Model A, we have

-0

x=1t

fl(t,e)
fz(t,e)

£,(t,0)

1,(t,0)

(61, 62. 63. 04) = (KO’ |3°’ Kl"ﬁl)



B, (T, -T.)
12 1
= - . <
Kl('r2 Tl)e 72 <t TS
= <
0 | | | t Tl
From (1) . . va
Bt . .,
o /
= : < <
£(t,0) Koe . | 0 t‘ Tl
-8t B, {t=1.)
o 1l 1
= < <
Koe + Kle Tl t 72
-Bt B, (T -T1.)
o 172 1
= <
Koe o+ Kle | . . Tz =t 73

Substituting in (6) and assuming that Model A applies, we obtain

the following four simultaneous linear equations in Ko, Kl' ﬁo, pl:

£ 0 0, 0
Boti, Bty 0. 0. Byt 0
121 e [e (1;0 - K) ~Kte (po - po)]
£ ) 0
-3t B (t.-T.) : ‘ p (t -T )
E o Clegt 11 (X, - K(l)) + Kg(ti - T)e 1 1 B, - p(l’)]
= 1 ¢
£ 0. 0 £ _ 0
-poti 0 potl pot1 0 ﬂl(t -T )
= e (yi - Koe Kl X
(7) i= ‘ i=n 1 .
' f 0 0 ' 0 S
B t. P t. B _t.
0 o i o i 0 0 oi 0
1; Kt.e [e (K, -K) -Kte @, po)]_
£ 0 0
-Bt. p (t -T.) ) . B, (t . ~T)) »
+ Z Kotie oifgt 11 (K, - K(l)) + K(l)(ti ~T) e 171 B, - p‘l))]
i=n1 .
f 0 0 f 0
0. Poti. Bots 0. Pt o pl(t =Ty)
='.§; Kotie‘ (yi - Koe ) - ,E: Kotie (Kl, } )
1= . 1=nl



16
£ 0 0 o
P8y Boty 0 0, Po'i 0
i=n, ’
N 0
Prltm) 0, .0 BYt, =) .
MR S S ®, - 6]
£ 0 o o
Z ﬂl(ti"Tl) 0 -poti 0 pl(ti-'rl)
= € Y. - Ke e
i=n 1 o) 1
1
£ 0 o . |
Y k0 Br(eymm)) Bty 0 o Bty 0
L, 5 e [, = k) - Kxtie © Tap, - )
1
o 0
Byt =T 0 0 By (t,=T)) o
+ e i (K1 - Kl) + Kl(ti - Tl)e i (pl _ ﬂl?]
£ 0 o _0
= E: KO(t, - v )epl(ti—Tl)[ - Koe_poti - Koeﬁl(tile)
= Lo 174 1 ‘ ¥y o 1
1

A similar set of equations pertain tb Model B with the summation
from nl to £ broken into two'parts, one summation going from nl to
n, - 1 and the other from n, to £f.

The solutions obtained from (7) should be checked in (4).

The system of equations (7) can be written in matrix form.

Lef & = AX

where
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yl\ | fl(tl,e°) 'fz(tl,e°') o ‘ 0 \

L] . '//
y : o o
n, -1 ) £t _.,07) £ (t _.,8) : 0 0.
Y = 1 A= 1 nl .1 .72 n, 1 , ]
' o, o o o
y _ £.(t ,0) £ (t_ ,0) £.(t_ ,67) £ (t_ ,8)
nl ' 1l pl 2 nl 3 n1 4 nl
o o ’ R~ o
Ve £, (t,,0) £,(t;,0") 2,(t,,67  £,(t.,0 )/
K = KO
o o
0
Kl K1
X = 0
Bo B po
0
Py "B
Then‘..:
' A,AX= A’Y

X = (A'8)71 aly
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Appendix B. The large sample theory for Modél B is well known and

follows from the derivation given in Mood, Introduction to the

Theory of Statistics, McGraw-Hill, 1950, pp. 208-211,

In Model A as we are no 1onger.dea1iné with ideﬂfically distributed
random variab;es; the large sample theory used in Model B does not
apply. Furthermore, the non-linearity of our model rules out the_
classical results of linear regression theory. The approximate results

given come from the following derivation:

9 1n £(y1,0)

Let ui = 56

where yi is given by (1) and © in any one of the unknown parameters.

The maximum likelihood equation

d 1n L(H)

s =9

is expanded in a Taylor Series about @ = 6, -

0= d 1n L(8) _ aln‘L(eo) . azln L(BS 5 - 0)
00 ' BQ aez o
-where
8e (6,8,
In terms of ui this equation becomes
< : - ;o
(5) ' - lui(eo) = (6 - 8) Zui(e)




‘ ~B S B, (t. =)
- ;L_<y1 - Koe o i Kle 1741 1 )2
£(y,,0) = ——e 2°
ot o
with 0 = ﬁ.

- -8 t, B, (t . =T.) B, (t, =7.)

1 o i 11 i 11 1

u = 5y, - Ke T Ke Ky (t, = T)e

The ui are independently and normally distributed with

E[ui] = 0.
28 (t,-1.)
) xf(ti -7 )e 174
Var [ui] = 0 (ui) = —
g
alsQ
du, . B, (t.-T)
? i -1 141 17,2 :
ui(ﬁl) = -a-p—l- = 07- (Kl(ti - 'Tl) e ) o+ (ti Tl)ui
2 m ~ m
Z (B = - 3 ((x, - pl(ti_Tl))‘o‘ Y (t, - T)u
u, By 2 . e * i~ Y
1 . [e) 1= j=
2 m
- Ei'.ﬁ. (t. - 7 )2 ezpl(ti Tl)
~ 2 i 17 '
g i=
as
n B

E{ E; (t, - 71)ui] = 0
i= ' h -

Substituting in (5)

19
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- Z ui(eo) ' P

g MW =T)) /
(t, - Tl) e
o° i= : s

bl - pl is approximately normaily distributed with mean 0 and var{ance

(6) - ~
| 2 O BT
Kl ’ (1:i - Tl)e
A
Note that an error is introduced in the evaluation of.kG) !
by using bllinstead of ﬁl'




